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Self-orienting in human and machine 
learning

Julian De Freitas    1 , Ahmet Kaan Uğuralp    2, Zeliha Oğuz-Uğuralp    3, 
L. A. Paul    4, Joshua Tenenbaum5 & Tomer D. Ullman    6

A current proposal for a computational notion of self is a representation 
of one’s body in a specific time and place, which includes the recognition 
of that representation as the agent. This turns self-representation into 
a process of self-orientation, a challenging computational problem 
for any human-like agent. Here, to examine this process, we created 
several ‘self-finding’ tasks based on simple video games, in which players 
(N = 124) had to identify themselves out of a set of candidates in order to 
play effectively. Quantitative and qualitative testing showed that human 
players are nearly optimal at self-orienting. In contrast, well-known deep 
reinforcement learning algorithms, which excel at learning much more 
complex video games, are far from optimal. We suggest that self-orienting 
allows humans to flexibly navigate new settings.

A current proposal for a computational notion of self is a representation 
of one’s body in a specific time and place, which includes the recogni-
tion of that representation as the agent. This turns self-representation 
into a process of self-orientation, a challenging computational problem 
for any human-like agent. While there has been much work on ‘the self’ 
in philosophy, psychology and neuroscience1–13, few that we know of 
show how the self can be concretely represented in artificial intelligence 
(AI) algorithms14,15. In our theoretical paper16, we introduced the notion 
of a ‘computational self’ and explained its role in solving a basic problem 
faced by any intelligent agent—human or artificial—that learns, thinks 
and acts for itself. In that paper, we argue for a computational notion 
of ‘self’, a representation that points to an entity in the world and tags 
it as the agent that is doing the representing and taking actions in the 
world, propose that existing AI probably do not have a computational 
self-representation in this sense, and explore the case for how such a self 
can be concretely represented in AI algorithms. Paul et al.16 suggest this 
representation and process is crucial for flexible learning and action 
in humans, that many new environments require humans to first solve 
this process, and that the computational challenge that humans can 
solve in a general-purpose way is linking to the correct self-representing 
entity across situations and environments.

In this Article, building on this theoretical work, we test for a com-
putational notion of ‘self’. We refer to the process of identifying this 

entity as ‘self-orienting’. We suggest this representation and process 
is crucial for flexible learning and action in humans, and that many 
new environments require humans to first solve this process before 
achieving other goals. By building on past work on reinforcement 
learning (RL)17–21, game playing22,23 and cognitive science work on RL 
and game playing24–26, we also propose that existing AI probably do 
not have a computational self-representation in our sense, and that, 
while some algorithms may be trained to carry out self-orienting in 
particular environments, they do so through particular brittle cues 
rather than a general-purpose process. The computational challenge 
that humans can solve in a general-purpose way is linking to the correct 
self-representing entity across situations and environments.

Related to the current work, Hierarchical Attentive Multiple 
Models for Execution and Recognition (HAMMER) uses perceptual 
perspective-taking to learn both an egocentric sensory space and 
a similar space for another agent, including the possible goals and 
actions of that agent15. The notion of needing to identify with an avatar 
that matches one’s actions and orient to the perspective of that avatar 
to successfully play the game is akin to the notion of self-orienting 
explored in the current manuscript. HAMMER has since been incor-
porated in the Distributed Action Control architecture14, where its 
perspective-taking capabilities were integrated with other AI models 
related to the sense of self, and it is also being leveraged to develop 
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These algorithms also embody the thesis of RL that some prominent 
AI researchers32–34 have suggested is a scaling route to building fully 
general AI with human-level intelligence or beyond.

Self-finding games
All four games featured four agents (also known as ‘possible selves’) 
indicated by red squares. Crucially, only one of these agents (the ‘digital 
self’) was controlled by the player’s keypresses. To complete a level, the 
player had to navigate their digital self to a goal (indicated in green) by 
moving through unimpeded spaces (black) and avoiding wall bounda-
ries (grey). In each of the four games, there were four basic moves: 
Left, Right, Up or Down, which human players enacted by pressing 
the arrow keys, although the arrows did not necessarily correspond 
to the resulting action.

In principle, the games could be solved without self-orientation. 
However, our hypothesis was that for humans each game level naturally 
consisted of two phases: (1) ‘self-orienting’, in which the player figures 
out which of several possible selves is their real digital self (their ava-
tar), and (2) ‘navigation’, in which the player moves the digital self to 
a rewarding goal.

Each game consisted of 100 levels (except for study 4c). The levels 
of each game obeyed the overall rules of the game, while varying the 
starting position of the different entities (agents, avatar and walls).

To measure general self-orienting, the different games were 
designed such that agents had to exploit different kinds of cues to 
successfully self-orient.

Human and artificial players
Human participants had little instruction or no feedback of any kind, to 
not give them an advantage over the AI algorithms. To test if they played 
optimally, we compared their performance with that of a ‘self-class’ that 
we hard coded to solve each game optimally: first, it found the digital 
self by taking informative actions that disambiguated the most pos-
sible selves simultaneously; second, after identifying the digital self, 
it navigated it to the goal. Finally, to assess the abilities of well-known 
game-playing RL algorithms, each game was played for 2,000 levels 
by the following RL algorithms: DQN, TRPO, PPO2, A2C, ACER and 
OC. These algorithms (also known as pixel-based RL baselines) use 
a combination of convolutional and fully connected neural network 
layers to learn from frame-by-frame images of the game. They received 
a reward of 1 for completing a level of the game. As a control, we also 
ran the games through a random policy that took random actions.

Study 1: The Logic Game
In the Logic Game (Fig. 1), we predicted that human players would rap-
idly learn the optimal strategy (disambiguate which agent was their 
avatar, then navigate to the goal), whereas RL baselines would not. 
We expected that this would be because humans already had the cor-
rect goal of eliminating options for the digital self, whereas RL agents 
did not have this goal, but were simply learning state–action pairs. RL 
agents should thus be inefficient at self-orienting, because they would 
be unable to learn from ‘non-events’ in which actions led to no visible 
effects. More generally, it is possible that the reason these agents can-
not learn from such an event is because they suffer from a more basic 
problem: they do not have a notion of self-orienting at all.

In this and in the other games, our measure of performance is the 
number of steps taken to complete each level. How did human players 
compare with the self-class and artificial agents on this measure? Figure 
2a,b shows that humans rapidly reached optimal play after approxi-
mately just one level, performing indistinguishably from the optimal 
self-class thereafter. Bayes factor t-tests between human players and 
the self-class revealed that humans begin to perform indistinguishably 
from the self-class after just five levels.

Contrasting with human players, the AI agents played for several 
hundred levels before their performance plateaued. Notably, even 

AI systems that can reason about the activities of other agents27 and 
develop a self-other distinction28. This work is inspired by the devel-
opment of perspective-taking and imitation in humans29, in which 
children initially have a limited ability to engage in perspective-taking 
that hampers their environment30.

Also, related to the current work, Simultaneous Localization and 
Mapping addresses the problem of constructing or updating a map 
of an unknown environment while simultaneously estimating the 
agent’s position within it31, a critical ability that allows robots such as 
autonomous vehicles and drones to navigate in diverse environments. 
In contrast, the current work stress tests the ability to flexibly self-orient 
via dedicated self-orienting tasks involving multiple possible selves 
(rather than just a single given self), and asks whether such environ-
ments can be navigated by popular RL agents.

To appreciate the importance of self-orienting, it is help-
ful to imagine what it is like to ‘not’ have a correct computational 
self-representation. Often, humans experience this feeling for only a 
few moments before resolving the issue. This happens, for instance, 
when we do not know where we are in a library without windows, or 
when we wake up in a cold sweat and forget that we are in a hotel in Paris, 
or when we start a completely new video game, and have no sense yet 
which entity in the game is us, or what we can do with it. Games often 
single out a particular entity in the game as the player’s ‘Avatar’, and 
give it particular action affordances and a point of view and in general 
centre the game around it.

In Paul et al.16, we argue that finding out which avatar you are in a 
new game is a particularly useful way to explore our sense of a compu-
tational self-representation. This process is fast, and automatic: often 
we do not even think of how quickly we resolve the fact that of all the 
entities in the game the giant pink cat is ‘us’. In both games and life there 
are many possible cues that can help us in self-orientation. In a game, 
we might futz with a controller, or simply be told ‘you are the giant cat’. 
In the library, we may consult a map to spatially orient ourselves. In the 
hotel room, the tactile touch of the bedsheets may inform us we are in 
a hotel, and the clock face may orient us in time. The point is not that 
humans are good at exploiting any single one of these cues, but that 
they do so in service of a larger unified goal: to orient themselves in 
terms of space, time and identity.

In everyday life, we are constantly achieving the computational 
feat of self-orienting, the equivalent of identifying an avatar in a game, 
but with our body and its whereabouts as the avatar. The ease with 
which we perform self-orienting belies its complexity and importance: 
the ability to accurately self-represent ourselves is a crucial part of how 
we flexibly navigate different environments. When confronted with a 
new setting, we do not need to learn everything from scratch. Rather, 
we efficiently self-orient, and proceed to plan from there.

In the current work, we extend the proposal of self-orienting16 to 
investigate the extent to which humans and well-known AI algorithms 
from RL are capable of self-orienting. To do this, we created a set of 
increasingly complex ‘self-finding’ tasks that deliberately make it chal-
lenging to find one’s self. The tasks act as litmus tests of whether an 
agent is capable of flexible self-orienting. We compare both humans 
and RL algorithms to optimal play, as well as to each other, asking 
whether they can solve these tests, how quickly they can do so and 
how they do so. We find that humans exhibit near-optimal play across 
a variety of tasks. By contrast, well-known RL algorithms are not able 
to generalize across multiple settings, nor when a given setting is per-
turbed. We note that the algorithms that we use are not the cutting 
edge of contemporary AI, and cannot be representative of the latest 
frontiers in deep RL. Rather, we chose these algorithms because they 
are well known, well studied and among the most popular and influen-
tial baselines for building agents that operate autonomously in some 
environment, and there was no principled a priori argument for why 
they definitely should not be able to pass our tasks, given their human 
or super-human performance on many challenging environments. 
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after 2,000 levels, most AI players (ACER, TRPO, A2C and OC) did not 
reach human-level performance (Fig. 2c and Supplementary Table 1). 
In short, although the artificial agents improved in their performance, 
humans learned far more quickly and played more optimally.

What explains this difference between human and artificial play-
ers? One possibility is that it arises from the self-orienting phase of the 
game. Since human players reach optimal play, they must be able to 
eliminate candidates for their digital self, even when their actions 
produce no visible displacements (which occurs when their keypress 
leads the digital self to try moving through an immovable wall). It is 
possible that artificial players are not able to learn from such 
‘non-events’. To investigate this possibility, we also plotted the number 
of steps taken until the first visible displacement occurred, which we 
treat as the moment when players successfully self-oriented (Supple-
mentary Fig. 1). We find that none of the algorithms shows a noticeable 
improvement in how quickly they self-orient; in other words, although 
algorithms learned how to navigate to the reward (Fig. 2a), they do not 
learn how to optimally self-orient (Supplementary Fig. 1), whereas 
human players rapidly reach optimal levels of self-orienting (Fig. 2b 
and Supplementary Fig. 1). Notably, the average correlation between 
the number of steps taken until self-orienting (the first visible displace-
ment) and the total number of steps was higher than the correlation of 
the random agent (MrHuman = 0.85 , MrRandom = 0.07 ; t(20.2) = 27.6; 
P < 0.001; Cohen’s d = 8.72; 95% confidence interval (CI) 0.73 to 0.85; 
Fig. 2c), suggesting that performance depended on successful 
self-orientation. As for the last hundred levels of the artificial agents, 
all RL agents also had correlations significantly higher than the random 
agent (all P values <0.001; MrDQN = 0.99, MrA2C = 0.97, MrPPO2 = 0.93, 
MrTRPO = 0.89, MrACER = 0.56, MrOC = 0.24), supporting the idea that all 
of these agents were able to optimally navigate to the reward after the 
first visible displacement occurred, even though they did not learn 
how to optimally self-orient (Supplementary Fig. 1). As a sanity check, 
we confirmed that the self-class showed a perfect correlation between 
self-orienting and performance (Mr = 1.0). A final way to compare 
human and artificial players is to examine their behavioural patterns 
within the gaming environment over time. The heat maps in Fig. 2d 
show the patterns of each player across time, broken down for the first 
and last hundred levels. For the first hundred levels, we see that only 
the self-class resembles human players, with clear horizontal moves 
near the reward. In contrast, the artificial players move in a more dis-
persed fashion, and spend more time in the corners. By the last hundred 

levels, however, one of the AI players, DQN, begins to resemble human 
players. In Supplementary Information, we compare human and AI 
players, and find that most artificial players are not similar to humans 
even after 2,000 levels of training. We also speculate on why only DQN 
resembles human players, and why artificial agents have suboptimal 
behaviour.

In sum, the behaviour of human players was consistent with a 
strategy that first disambiguates which of several possible selves the 
player is meant to identify with (self-orienting), and only then pursues 
more explicit goals such as navigation. Even when not receiving (1) 
any description of how the game works or (2) any explicit instruction 
to navigate to the goal in as few moves as possible, and even when (3) 
their actions led to no visible change, human players took informative 
actions to optimally rule out candidates for their digital self.

While several well-known pixel-based RL algorithms learned to 
play the game more efficiently over time, they never played optimally, 
because they did not optimally self-orient in a game where some actions 
have no observable effects. Even at the end of a long learning process, 
most RL agents’ movement patterns did not indicate a self-orienting 
phase. These results do not mean that no state-of-the-art algorithm 
could solve the game as efficiently as humans did. In fact, the self-class 
is a very simple such algorithm. But to the extent that humans out-
performed all our standard well-known game-playing algorithms, 
this underscores the efficiency with which they localized their digital 
selves in new digital settings, and points to a missing representation 
and process in well-known RL agents. In fact, the results are consistent 
with, and support, the view that the RL agents never learn to self-orient.

Study 2: Contingency Game
The Logic Game shows the most bare-bones dynamic of self-orienting: 
a single step or two is sufficient for the first part of the task, and only 
one entity moves (at most). However, to bring the task closer to some 
of the opening examples such as a four-player split-screen games, the 
Contingency Game explores another way in which human players might 
self-orient: by exploiting informative contingencies. This time, when-
ever the player pressed a key, all possible agents moved, even though 
only one agent was truly controlled by the player. To orient on their 
digital self, players needed to eliminate from consideration those ava-
tars that moved in unexpected directions after a given keypress (Fig. 3).

Again, we predicted that human players would go through a 
two-step process, first self-orienting (figuring out which entity is their 

Result: No change

Keypress:
Result: Found me!

Keypress: 

(not me) (not me)

(me)

Time

Fig. 1 | The Logic Game. There are four agents (red blocks), one of which is your 
avatar. The level ends when the avatar reaches the goal (green block). In this 
example, moving down disambiguates the most possible selves (red)—the top 
two. If moving down produces no visible change, then you must be one of the 

bottom two agents. To disambiguate which of these bottom agents is your digital 
self, it is now equally informative to move right or up. Moving right reveals that 
the digital self was in the bottom left corner. Knowing this, you navigate it to the 
reward (green).
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avatar) and then navigating towards a goal. In contrast to the Logic 
Game, we expected that this time the pixel-based RL algorithms would 
eventually learn to play the game and be close to optimal, given that 
every action in the game leads to an observable result (unlike in study 1). 
Even so, we expected that the algorithms would require more levels of 
learning than human players before reaching optimal play, and would 
not have a notion of self-orienting.

Figure 4a,b shows that human players quickly plateaued, reaching 
close to optimal play on the first level, and then fluctuating in and out 
of optimal play thereafter. On average, humans took significantly more 
steps than the self-class (Mhuman = 14.33, Mself-class = 9.46; t(19.5) = 6.4; 

P < 0.001; Cohen’s d = 2.04; 95% CI 3.29 to 6.44). One likely reason 
that they played suboptimally is that they took the ‘lazy’ strategy of 
initially finding the digital self by repeatedly hitting the same key in 
one direction, for example, pressing right until one agent was clearly 
more displaced than the others. This is suggested by the human heat 
map (Fig. 4e), where we see horizontal lines emanating outwards from 
the starting location (indicated in blueish green). This behaviour is not 
strictly suboptimal since players were never explicitly instructed to 
complete the game in as few moves as possible. The strategy can even 
be considered optimal from the standpoint of saving cognitive effort, 
because it is easier to just hit one key until one avatar clearly pops out 
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Fig. 2 | Results of study 1 (Logic Game). a, Number of steps taken by all agents, 
averaged every 20 levels. Error shading reflects standard error of the mean. 
b, Zooming in on level-by-level human players and the self-class for the first 
hundred levels. Blue horizontal lines above the plot indicate levels where 
human performance is indistinguishable from optimal (that is, levels where 
the line is visible have a Bayes factor (BF01) above 1.0). c, Violin plot showing the 
correlations between the number of steps until the first visible displacement 
occurred and the total step count, for each participant. Error bars reflect 

95% CIs, centre of the error bar reflects the mean, and the P value beneath the 
plot shows the significance resulting from two-sided t-test comparing the 
correlation values with that of a random agent. d, Zooming in on artificial 
players for the last hundred levels, averaged every 20 levels. e, Heat maps 
of normalized action patterns for the first hundred levels (top row) and last 
hundred levels (bottom row), with human performance for first hundred levels 
included for comparison. Yellow shows the most visited, and purple shows the 
least visited, locations by the digital self.
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than to attend to which of four avatars is consistently responding 
contingently to changes in your keypress. In other words, the cost of 
moving away from the goal to find the avatar is much less than waiting 
to think about the optimal move35.

In contrast to human players, the artificial players required several 
hundred levels before their performance plateaued (Fig. 4a). Unlike in 
study 1, some artificial players (DQN, A2C and PPO2) achieved optimal 
performance by the end of training (Fig. 4d and Supplementary Table 
2). This is likely because seeing an observable consequence for each 
action enabled the algorithms to learn. DQN was the most reliable 
AI player, consistently staying close to optimal performance, while 
A2C sometimes achieved optimality but also experienced periods of 
suboptimal performance. DQN’s success as the top artificial player 
could be attributed to its suitability for discrete environments and its 
exploration strategy (‘RL algorithms’ in Supplementary Information). 
In short, human players learned quicker than algorithms in this game, 
yet they fluctuated in and out of optimal performance, whereas some 
AI players eventually played optimally.

Did human and artificial players follow similar behavioural pat-
terns? The heat maps in Fig. 4e show that, for the first hundred levels, 
artificial players exhibited more dispersed behavioural patterns than 
humans and some RL algorithms—such as TRPO, ACER and PPO2— 
appear to have gotten stuck in the corners. By the last 100 levels, 
the paths of the artificial agents were clearer (‘Heat map results’ in  
Supplementary Information).

As in study 1, another way to compare human and algorithmic 
players is to see how many moves they spend in the self-orienting and 
navigation phases of the game, relative to optimal play. While the Con-
tingency Game does not allow us to definitively isolate the point when 
human players found their digital selves, we can still get a sense of when 
this occurred by plotting the average distance of the digital self from 
the reward across the steps taken within a given level, and comparing 
this with the self-class. Supplementary Fig. 2 plots this distance for each 
subsequent move in the first level and last level for human (level 100) 
and artificial players (level 2,000). We find that human players take a 
few extra steps before they begin navigating to the reward on level 1, 
but by the last level they are clearly optimal.

To more definitively establish the relationship between 
self-orienting and performance, supplemental replication study 2b 
tested whether participants who localize their digital selves earlier 

finish the game in fewer steps. In this version of the game, participants 
not only completed game levels but for each level were also asked to 
click on the square they believed they were controlling as soon as they 
found it (those who neglected to do so, or who clicked a square more 
than once, were shown error messages). This design discloses the 
self-finding aspect of the game, yet we found no difference in the aver-
age number of steps taken for the 100 levels of this game versus study 
2a (Moriginal = 14.33, Mnew = 14.32; t(168.3) < 0.1; P = 0.994; Cohen’s 
d < 0.01; 95% CI −1.81 to 1.82); BF01 6.50), suggesting that participants 
played no differently. Notably, the average correlation for participants 
between the number of steps taken until self-orientation across levels 
and the total number of steps taken in those levels was significantly 
higher than this correlation for the random agent (MrHuman = 0.55 , 
MrRandom = −0.01; t(30.8) = 10.6; P < 0.001; Cohen’s d = 3.35; 95% CI 0.46 
to 0.67; Fig. 4c), suggesting that performance depended on successful 
self-orientation (Methods).

As for the artificial agents, self-orienting started at random on 
level 1, but by the end of training some of the algorithms (DQN and A2C) 
were close to optimal (Supplementary Fig. 2). This suggests that some 
algorithms learned to behave in a way that is similar to self-orienting, 
while humans learned to optimally self-orient. If the artificial players 
truly learn how to efficiently self-orient, then they should be robust to 
environmental changes that affect the self-orienting task. To explore 
this, after the artificial agents learned for 2,000 levels, we added an 
additional ‘mock possible self’ to the game, which was coloured red 
like the other possible selves; in reality, the mock possible self was 
never controllable by the player’s keypresses. After this mock agent 
was added, all AI players exhibited a decrement in efficiency, requir-
ing ~700 more levels to recover pre-perturbation performance levels; 
although some algorithms, such as TRPO and PPO2, never do (Sup-
plementary Fig. 3a), perhaps because these methods avoid using large 
policy updates, making them less flexible. This pattern suggests that 
the algorithms did not learn a robust self-orienting strategy.

In supplemental replication study 2c, human participants again 
played the first hundred levels of the game followed by the same mock 
agent perturbation shown to the algorithms, after which they played 
for 50 more levels. Although performance was slightly worse after 
the perturbation (Moriginal = 13.98, Mperturbated = 15.35; t(147.8) = −3.0; 
P = 0.003; Cohen’s d = -0.43; 95% CI −2.25 to −0.48), it remained near 
optimal levels (Supplementary Fig. 3c). To compare post-perturbation 

Keypress: 
Result: Cannot eliminate
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1 2

3 4

Keypress: 
Result: Found me!

2
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1

3

Time

(not me)(not me)

(me) (not me)

Keypress: 
Result: Eliminated 1 and 2

2

4

1

3

Fig. 3 | The Contingency Game. In this example, moving up eliminates the top 
two candidate selves (1 and 2), which do not move in the direction of the keypress. 
In frame 2, moving down does not help you find your digital self, since by chance 

both the remaining possible selves (that is, 3 and 4) move down. In frame 3, 
moving right eliminates another candidate self (4), disambiguating your digital 
self. Going forward, you can navigate the digital self (3) to the reward.
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performance of human players for 50 levels against that of algorithmic 
players for 2,000 levels, we averaged algorithmic performance at every 
40-level interval. Average human performance exceeded all artificial 
models (P < 0.05) except for A2C, which was similar to human players 
(MA2C = 20.07, MHuman = 15.35; t(49.7) = 1.5; P = 0.130; Cohen’s d = 0.31; 
95% CI −1.44 to 10.88; BF01 1.66).

In short, study 2 presents the opposite challenge of study 1: how to 
self-orient when your actions are correlated with several (as opposed to 
no) changes in the environment. The solution is to focus on informative 

changes—moves that are consistent with one’s keypresses—then nar-
row down candidates from there. Human players were able to quickly 
solve this problem at near-optimal levels, albeit by first taking ‘lazy’ 
steps to effortlessly disambiguate the digital self. The artificial agents 
were also able to solve the levels and reach optimal play—presumably 
because this time actions always led to observable consequences. Even 
so, these agent failed on the robustness test, suggesting they did not 
actually learn to self-orient and they did not learn and behave in the 
same way that people do on these tasks.
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Fig. 4 | Results of study 2 (Contingency Game). a, Number of steps taken by 
all agents, averaged every 20 levels. Error shading reflects standard error of 
the mean. b, Zooming in on level-by-level human players and the self-class for 
the first hundred levels. Blue horizontal lines above the plot indicate levels 
where human performance was indistinguishable from optimal play (that is, 
levels where the line is visible have a Bayes factor (BF01) above 1.0). c, Violin plot 
showing the correlations between the number of steps until self-orientation 
and the total step count, for each participant (study 2b). Error bars reflect 95% 

confidence intervals, centre of the error bar reflects the mean, and the  
P value beneath the plot shows the significance resulting from two-sided t-test 
comparing the correlation values to that of a random agent. d, Zooming in on 
artificial players for the last hundred levels, averaged every 20 levels. e, Heat 
maps of normalized action patterns for the first hundred levels (top row) and last 
hundred levels (bottom row, with human performance for first hundred levels 
included for comparison). Yellow shows the most visited, and purple shows the 
least visited, locations by the digital self.
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Studies 3 and 4 test the boundaries of human and algorithmic 
capabilities, by deliberately exploring more challenging variants of 
the Contingency Game in which key mappings change or a player is 
induced to lose track of the digital self.

Study 3: Switching Mappings Game
Study 3 explored a variant of the Contingency Game in which the map-
pings between keypresses and actions are randomly switched each 
level, requiring players to be more flexible than in studies 1 and 2. The 
switched mappings manipulation can be likened to controlling a new 
remote control, or figuring out the rules of a new game. Self-orienting 

in such contexts entails figuring out how your actions relate to the 
environment, rather than simply assuming that there is a predictable 
mapping between your keypresses and the observable consequences 
(as in study 2).

We predicted that switching key–action mappings on every level 
would prevent human players from playing optimally, because they 
would struggle to remember the new mappings. Even so, we expected 
that they would perform at near-optimal levels, because they would 
still employ an otherwise efficient self-orienting strategy. We also 
expected that, as before, playing this game requires a two-step process: 
self-orienting, followed by navigation. In contrast, we expected that 
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Fig. 5 | Results of study 3 (Switching Mappings Game). a, Number of steps taken 
by all agents, averaged every 20 levels. Error shading reflects standard error of 
the mean. b, Zooming in on level-by-level human players and the self-class for the 
first hundred levels. c, Violin plot showing the correlations between the number 
of steps until self-orientation and the total step count, for each participant (study 
3b). Error bars reflect 95% confidence intervals, centre of the error bar reflects 
the mean, and the P value beneath the plot shows the significance resulting from 

two-sided t-test comparing the correlation values with that of a random agent. 
d, Zooming in on artificial players for the last hundred levels, averaged every 20 
levels. e, Heat maps of normalized action patterns for the first hundred levels 
(top row) and last hundred levels (bottom row), with human performance for 
first hundred levels included for comparison. Yellow shows the most visited, and 
purple shows the least visited, locations by the digital self.
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the RL algorithms would not be able to learn the general strategy of 
self-orienting followed by navigation, but rather only locally learn key 
mappings to reward. Such local learning is particularly susceptible to 
key switches, and so we would expect the RL agents to mostly fail on 
this task, further underscoring the flexibility of human players.

Figure 5a,b shows that human players learned quickly at the 
beginning, then consistently underperformed the self-class. On aver-
age, human players took significantly more steps than the self-class 
during their 100 levels of gameplay (Mhuman = 26.66, Mself-class = 10.70; 
t(19.0) = 7.2; P < 0.001; Cohen’s d = 2.27; 95% CI 11.31 to 20.62). A likely 
reason for this performance gap is that human players struggled to 
remember constantly switching key mappings and battled an incon-
sistency with strong prior expectations about how arrow keys relate 
to actions, for example, expecting that ‘←’ means left. However, this 
gap does not necessarily mean that humans could not have performed 
better had they been instructed to play as efficiently as possible. Also, 
human players still performed at near-optimal levels, suggesting that 
they otherwise employed an effective self-orienting strategy (Fig. 5).

Strikingly, the artificial agents were not able to learn the game 
at all (Fig. 5a–d and Supplementary Table 3). Supplemental analyses 
suggest this is because the learning that occurred for these algorithms 
was specific to a given key mapping, rather than generalizable across 
key mappings.

Did human and artificial players follow similar behavioural pat-
terns? When we shuffled the key–action mappings after each level, the 
behaviours of the artificial agents were dispersed and random-looking 
(Fig. 5e), appearing different from human play. Furthermore, as in study 
2b, study 3b found that participants who localize their digital selves 
earlier finish the game in fewer steps, suggesting that performance 
depended on successful self-orientation (‘Supplementary results’ in 
Supplementary Information).

It is important to emphasize the qualitative difference between 
human and RL agent behaviour on this task. Human players seem to 
follow the general strategy of self-orientation, by figuring out which 
keys map to which actions and disambiguating their avatar, then navi-
gating to the goal. They also seem to learn the overall patterns and 
rules of the game: ‘in each level, the arrows are scrambled, and I need 
to re-figure them out, then I can navigate’. By contrast, the RL agents 

seem to do nothing of this sort, and are unable to learn general pat-
terns and strategies even following thousands of levels. In sum, study 
3 presented another challenge beyond study 2: self-orienting when 
key–action mappings are unpredictable. Humans were able to solve 
the game, albeit by performing consistently at near-optimal levels. In 
contrast, the added challenge rendered the pixel-based RL algorithms 
incapable of solving the game altogether, suggesting that they did not 
learn a general policy for self-orienting. Instead, their policies were 
overspecialized to specific key–action mappings.

Study 4: Switching Embodiments Game
Study 4 explored a variant of the Contingency Game in which the digital 
self periodically switched embodiments within each level, causing 
players to temporarily lose track of their digital selves (Fig. 6). This 
disruption required players to be even more flexible than in the previ-
ous games, repeatedly self-orienting and navigating. The manipulation 
can be likened to getting lost, as when your digital self crosses paths 
with another avatar in a crowded virtual setting.

We predicted that human players would find the game challeng-
ing but would eventually learn to play optimally, because not doing 
so would aversively increase how long it took them to complete the 
game. Unlike previous games, we expected that behaviour would not 
follow a two-step process of self-orientation followed by navigation, 
but rather interleaved bursts of the two. As for the pixel-based RL 
algorithms, we did not have strong predictions about whether they 
would be able to learn the game. On the one hand, actions always had 
observable consequences, which was useful for RL agent learning in 
study 2. On the other hand, RL agents might not be able to handle the 
embodiment switch, because this would only occur after several steps 
(although the switches did always occur after a consistent number 
of steps). Either way, we expected that the algorithms would be less 
efficient than human players.

Results
Figure 7a,b shows that human players learned quickly at the beginning, 
then reached optimal performance after ~30 levels. Why did human 
players reach optimal performance in the Switching Embodiments 
Game, but not the Switching Mappings Game? Most likely, the Switching 
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self up, but avatar 3 moves in an unexpected direction (rightwards)—your digital 
self has switched embodiments. Meanwhile, agents 1 and 4 did move up, so they 
are the new candidate digital selves. In the next step, you try to disambiguate the 
digital self by moving up again, and notice that only avatar 4 moves up. This is 
your new digital self, so you navigate it to the reward.
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Embodiments game did not impose the same memory requirements 
(players only needed to remember their embodiment, not how each key 
mapped to an action). Also, unlike in the Switching Mappings Game, if 
players did not efficiently navigate the Switching Embodiments Game, 
then the embodiments would switch indefinitely, preventing them from 
completing a given level and prolonging the experiment.

OC was unable to learn the game, even after we tried numerous 
hyperparameters (Supplementary Table 14), perhaps because the agent 
required more training to learn (given that it was slower to learn the Con-
tingency Game compared with other agents), or because the options 
became too complex to solve for the agent. All other artificial agents 
were able to learn the game, with some (A2C, ACER and PPO2) even 

reaching optimal play after ~600 levels (Fig. 7a–d and Supplementary 
Table 4). A possible reason that the algorithms learned is that the key 
mappings remained useful; it is just that they were enacted through 
different agents. Presumably, the algorithms learned to manoeuvre 
whichever agent was correctly responding to key mappings closest 
to the reward. Of course, a corollary of this interpretation is that the 
artificial agents would not have solved the game in a human-like man-
ner by orienting on a specific self. To test this, we added an additional 
simple algorithm (Proximity) that found the closest agent to the goal 
in each step and tried to navigate it to the goal. Surprisingly, this agent 
was slightly better than the self-class even though it did not implement 
self-orienting and thus had an obvious drawback, that is, it wasted steps 
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Fig. 7 | Results for study 4 (Switching Embodiments Game). a, Number of steps 
taken by all agents, averaged every 20 levels. Error shading reflects standard error 
of the mean. b, Zooming in on level-by-level human players and the self-class for 
the first hundred levels. Blue horizontal lines above the plot indicate levels where 
human performance is indistinguishable from optimal play (that is, levels where 
the line is visible have a Bayes factor (BF01) above 1.0). c, Violin plots showing the 
correlations between total step count and the mean steps until self-orientation 
(study 4c). Error bars reflect 95% confidence intervals, centre of the error bar 

reflects the mean, and the P value beneath the plot shows the significance 
resulting from two-sided t-test comparing the correlation values with that of 
a random agent. d, Zooming in on artificial players for the last hundred levels, 
averaged every 20 levels. e, Heat maps of normalized action patterns for the 
first hundred levels (top row) and last hundred levels (bottom row), with human 
performance for first hundred levels included for comparison. Yellow shows the 
most visited, and purple shows the least visited, locations by the digital self.
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if the closest agent was not the real self. Even so, the Proximity algorithm 
outperformed the self-class in this game due to one key advantage: it 
effectively utilized the additional steps that would have otherwise been 
expensively spent on self-orienting (which needed to happen at least 
twice in the game, given the frequent embodiment switches). In general, 
self-orientation before planning is not always guaranteed to be optimal 
in this game, in terms of winning the game in the fewest number of steps.

Did humans and RL agents follow similar behavioural patterns? 
By plotting the average distance of the digital self from the reward on 
the first and last levels of play (Supplementary Fig. 7), we see that both 
human and artificial agents improved. The exploration heat maps show 
that, unlike the optimal self-class, humans spent more time in the lower 
and upper edges, maybe when they were struggling to adapt to the 
embodiment switch (Fig. 7d). Otherwise, the exploration patterns look 
similar. As in studies 1 and 2, we also tested how artificial and human 
players responded to a ‘mock possible self’ perturbation (studies 4b 
and 4c), again finding that human players used self-orientation whereas 
the algorithms did not. Post-perturbation performance for human 
players also exceeded all artificial players except for ACER, which 
employed a proximity-like heuristic strategy other than self-orienting 
that worked well in this game (‘Supplementary results’ in Supplemen-
tary Information).

In short, study 4 presented a constant challenge by switching the 
embodiment of the digital self within a level. This required players to 
be highly flexible, repeatedly self-orienting after losing their digital 
selves. Even so, artificial agents learned to play at optimal levels, but 
did so using a strategy that is different from self-orienting, suggesting 
that they did not actually learn to self-orient. In contrast, human players 
solved the game by self-orienting; when they performed worse during 
post-perturbation, this was because they self-oriented less consist-
ently. Figure 8 summarizes the performance in all games for each agent 
before and after perturbation, by showing the average number of steps 
taken in a level for the final 50 levels during the training phase, as well 
as for all levels in the post-perturbation levels.

General discussion
This paper develops an account of how and why a computational 
notion of a self-orienting agent should be represented in machines 
that are meant to capture human-like intelligence. Such a represen-
tation is needed to solve basic problems continually confronted by 
any intelligent agent that learns, thinks and acts for itself. We tasked 
current game-playing algorithms with solving games in which the 
spatiotemporal location of the self’s avatar was ambiguous, and found 
them to be structurally unsuited for learning the notion that the game 
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Fig. 8 | Results for the mean number of steps during the last 50 levels and 
(where relevant) all post-perturbation levels. a, Logic Game (N = 20).  
b, Contingency Game (N = 20). c, Switching Mappings Game (N = 20).  
d, Switching Embodiments Game (N = 18 for artificial players and N = 19 for 
human players). a and c are sorted by the mean number of steps taken in the last 
50 levels, whereas b and d are sorted by the mean number of steps taken in the 
post-perturbation levels. Error bars indicate standard error of the mean, and 

centre of the error bar reflects the mean. Points on the bars represent different 
seeds/participants. We note that humans mostly recovered from perturbations 
in cases where the perturbation was not meant to have an effect on the self-
orientation strategy, but that for the fourth game humans did perform worse, 
which is expected. There was no RL algorithm that matched the pattern of 
human performance post perturbation, suggesting they did not employ a 
human-like self-orientation strategy.
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contains an avatar entity, and self-orienting towards the avatar. Even 
when RL algorithms did learn to play the games we studied, stress 
tests showed that these algorithms did not learn a robust and general 
self-orienting strategy.

When we minimally perturbed the games in ways that maintained 
the basic structure, the RL algorithms were generally off the mark, 
and there was no RL algorithm that consistently matched human 
behaviour post-perturbation: people were able to recover from the 
perturbations, except in cases where the perturbations are expected 
to make self-orientation more difficult. In general, we do not expect 
self-orientation to be robust to all perturbations or to guarantee opti-
mal performance in all cases in the sense of getting to a goal as quickly 
as possible. Rather, we suggest self-orientation is an automatic process 
that people use in planning that usually allows them to operate with 
near-optimal efficiency across situations, but also that such a process 
may locally lose out to a simpler strategy in tailored situations, as in 
our fourth game.

Although we have studied an ability that happens very quickly 
in humans, we also see how consequential it is—when human play-
ers struggle to self-orient, this leads to large increases in time spent 
playing a game, and when AI are incapable of self-orienting, they need 
many hundreds of more levels of gameplay before playing optimally. 
Here we identified the structural limitation in some well-known AI 
algorithms that leads to this difference, bringing some concreteness 
to an ancient topic of ‘self-representation’ that previously escaped 
computational rigour. While the very latest AI can even play multiple 
games36,37, our results predict that they will learn these games in a 
non-human-like way. Our contributions also include a test bed that 
can be expanded to examine whether algorithms have a computational 
notion of self-orienting. Specifically, we created a series of litmus 
tests of whether agents have a computational self-representation, 
and metrics of optimality and AI comparisons by which to assess the 
extent to which humans are effective at self-orienting. Potential objec-
tions to our findings are addressed in ‘Supplementary discussion’ in 
Supplementary Information.

Methods
All data were collected under approval by the Harvard University-Area 
Committee on the Use of Human Subjects (IRB-16-0158). Informed 
consent was obtained from all participants.

We aimed to recruit 20 participants to play each game. All games 
were created by modifying an existing gridworld gaming environment38 
compatible with the OpenAI Gym Toolkit39. Readers can play the games 
at https://eilexp.xyz/.

Before each game, participants were asked to answer a consent 
form and two attention check questions. Those who passed the checks 
entered our Qualtrics survey, where they were provided a link to start 
playing the game and simply instructed to ‘use the arrow keys to play 
the game’. After the game ended, we asked participants to fill in their 
random ID and complete the remaining questions in the Qualtrics 
survey, including comprehension checks and demographics. We used 
Cloud Research to publish our studies on Amazon’s Mechanical Turk.

All artificial agents were run twenty independent times except in 
study 4 where they were run 18 times to match the number of human 
participants included in that study, using randomly initialized seeds 
per run.

In comparing human performance to optimal play we use both 
t-tests and Bayes factors40, which can be used to quantify evidence 
for the null hypothesis. For example, BF01 of 5.0 means that the data 
would be five times more likely under the null hypothesis than under 
the alternative hypothesis. Our Bayes factor analysis assumes a default 
medium prior of sqrt(2)/2, and is conducted using the BayesFactor 
library in R. We looked for evidence in favour of the null hypothesis of 
no difference in performance between human players and the optimal 
self-class (that is, BF01), which would be evinced by a BF01 >1. The results 

of these tests are depicted with horizontal lines in Fig. 2b. Because we 
conduct 100 Bayes tests, one for each level, full test results for each 
game are reported in Supplementary Information (Supplementary 
Tables 15–20).

Study 1: Logic Game
Participants. Our sample size for all experiments was determined by a 
pilot study that found clean results with just 10 participants. Since we 
wanted to run several seeds of each artificial algorithm, we doubled this 
number for the sake of fair comparison. We recruited 20 participants 
(40% female, Mage = 42), paying them US$1 each. All participants passed 
attention checks, and at least one of the two comprehension checks. 
Participants completed the game in 8.9 min on average.

Game and agents. In the Logic Game, an optimal player should 
leverage logic to take the most efficient action to disambiguate the 
digital self from all possible selves, even when an action leads to no 
visible movement from any avatar. By design, there was only one 
correct move, else the digital self did not physically displace. The 
Logic Game consisted of a 9 × 9 grid space. Each possible self was 
neighboured by three walls. On each level we varied two factors: 
the positions of the walls neighbouring each possible self, and the 
starting location of the digital self (Supplementary Fig. 16). The 
game is visualized in Fig. 1, and hyperparameters for each of the 
game-playing RL agents are provided in Supplementary Information 
(Supplementary Tables 9–14). To optimally self-orient and navigate 
the digital self to the reward, the hard-coded self-class employed the 
logic in Supplementary Fig. 17.

Study 2: Contingency Game
Participants. We recruited 20 participants (42% female, Mage = 44), pay-
ing them US$1 each. They completed the game in 11.6 min on average. 
All passed attention checks and at least one of the two comprehension 
checks.

Game and agents. The Contingency Game consisted of a 21 × 21 grid 
space. Each possible self was located in the middle of each quarter of 
the grid space. On each level, we varied the following: the oscillation 
direction of each possible self and the starting location of the digital 
self. Whenever a player pressed a key, all agents moved. For every 
move, all possible selves oscillated in one of two directions sampled 
at random: up–down and left–right. The only constraint was that the 
possible selves remained within a designated 9 × 9 space centred at 
their starting locations. To optimally orient on the digital self and 
navigate it to the reward, the self-class employed the logic in Sup-
plementary Fig. 18.

Analyses. Since it is less clearcut to measure the point of 
self-orientation for a random agent in all games except the logic game, 
in this study onwards we measured the correlation of the random agent 
by identifying the point at which the self-class would find the self, 
using the steps taken by the random agent. In other words, for each 
level in the game, we iterated through each action and compared the 
locations of each possible self after each action, eliminating the selves 
that moved in a direction different from the provided action. The step 
at which there was only a single remaining possible self was marked as 
the step at which the self was found. We then correlated this value with 
the total number of steps the agent required to complete the level, to 
compare with this same correlation for human players.

Study 2b: Contingency Game with self-finding task
Participants. We recruited 20 participants (40% female, Mage = 43), 
paying them US$2 each. They completed the game in 20.7 min on 
average. All passed attention checks and at least one of the two com-
prehension checks.

http://www.nature.com/nathumbehav
https://eilexp.xyz/


Nature Human Behaviour

Article https://doi.org/10.1038/s41562-023-01696-5

Game and agents. The environment was the same as in the Contin-
gency Game, but in this version of the game, participants were told: ‘In 
each level, as soon as you find which square you are controlling, please 
click on that square. You can only click one time per level’. Those who 
neglected to do so, or who clicked a square more than once, were shown 
error messages. When participants clicked on an agent, the agent that 
was clicked turned blue for half a second, to give feedback that they 
selected that agent.

Study 2c: Contingency Game with perturbation task
Participants. We recruited 20 participants (35% female, Mage = 38), pay-
ing them US$2 each. They completed the game in 18.1 min on average. 
All passed attention checks and at least one of the two comprehension 
checks.

Game and agents. Participants played the first hundred levels of the 
game followed by 50 levels of the same perturbation shown to the 
algorithms in study 2.

Study 3: Switching Mappings Game
Participants. We recruited 20 participants (35% female, Mage = 37), 
paying them US$3 each. They completed the game in 20.1 minutes 
on average (almost twice as long as in the Contingency Game). All 
passed attention checks and at least one of the two comprehension 
checks.

Game and agents. The game environment was the same as the Con-
tingency Game, except that key–action mappings were shuffled at the 
start of each level. To optimally self-orient and navigate to the reward, 
the self-class employed the logic in Supplementary Fig. 19.

Study 3b: Switching Mappings Game with self-finding task
Participants. We recruited 20 participants (60% female, Mage = 43), 
paying them US$2 each. They completed the game in 46.0 min on 
average. All passed attention checks and at least one of the two com-
prehension checks.

Game and agents. The environment was the same as in the Switching 
Mappings Game, but in this version of the game, participants were 
told: ‘In each level, as soon as you find which square you are control-
ling, please click on that square. You can only click one time per level’. 
Those who neglected to do so, or who clicked a square more than once, 
were shown error messages. When participants clicked on an agent, the 
agent that was clicked turned blue for half a second, to give feedback 
that they selected that agent.

Study 4: Switching Embodiments Game
Participants. We recruited 18 participants (56% female, Mage = 38), 
paying them US$4 each. They completed the game in 33.3 min on 
average. The study took approximately 20 min longer to complete 
than the Contingency Game (study 2) and 12 min longer to complete 
than the Switching Mappings Game (study 3), probably because the 
embodiment switching disrupted play. All passed attention checks 
and at least one of the two comprehension checks.

Game and agents. The environment was the same as the Contin-
gency Game. The digital self switched embodiments every seven 
moves—exactly one move before when an optimal player in studies 
2 and 3 would have finished the game. To optimally self-orient and 
navigate to the reward, the self-class employed the logic in Supple-
mentary Fig. 20.

Study 4b: Switching Embodiments Game with perturbation task
Participants. We recruited 19 participants (37% female, Mage = 44), 
paying them US$6 each. They completed the game in 70.4 min on 

average. All passed attention checks and at least one of the two com-
prehension checks.

Game and agents. Participants played the first hundred levels of the 
game followed by 50 levels of the same challenging perturbation shown 
to the algorithms in study 4.

Study 4c: Switching Embodiments Game with self-finding task
Participants. We recruited 19 participants (63% female, Mage = 38), pay-
ing them US$8 each. They completed the game in 59.7 min on average. 
All passed attention checks and at least one of the two comprehension 
checks.

Game and agents. Participants played the first 34 levels of the original 
game, which was the point at which their performance plateaued, as 
observed in study 4a. After that, they played 20 levels of the challeng-
ing perturbation task, which was the same as the one presented to the 
algorithms in study 4. The performance plateau was identified using 
the elbow method applied to a third-degree polynomial that was fitted 
to the human data. This polynomial had the lowest root mean square 
error when tested on a 30/70 test–train split, which was replicated 100 
times to ensure optimal fitting.

In this version of the game, participants were told: ‘In each level, 
as soon as you find which square you are controlling, please click on 
that square. Please do this every time when you find which square you 
are controlling’. Those who neglected to do so in a given level, or who 
clicked a square more than once within a second, were shown error 
messages. When participants clicked on an agent, the agent that was 
clicked turned blue for half a second, to provide feedback that the 
agent was selected.

We calculated the mean steps until self-orientation following an 
embodiment switch by dividing the step at which a participant clicked 
on an agent by 7, and taking the remainder (since embodiment switched 
at each of the seven steps). For example, if a participant identified 
themselves at step 10, we assume they took three steps to do so, as the 
last embodiment switch occurred at step 7. In cases where the player 
clicked on agents multiple times within the period of seven steps after 
the latest embodiment switch, we only considered the last selection 
in our analyses. If the participant selected the incorrect self and did 
not correct this before the next embodiment switch, we heuristically 
treated the self-orienting steps as 7, since this is the worst measurable 
self-orienting performance.

Artificial agents
All RL algorithms except OC were drawn from a public repository called 
‘stable baselines’41, a set of improved implementations of RL algorithms 
based on the original OpenAI Baselines repository42. The OC algorithm 
was drawn from a separate GitHub repository43. Hyperparameters of 
the algorithms were tuned to maximize performance for each game.

To map the environment pixel grid (for example, the 21 × 21 matrix 
in the Contingency Game) to the model’s input observation array 
(which is 128 × 128 × 3) for model training, we first calculate the size of 
each cell by dividing the width and height dimensions of the observa-
tion array (128 × 128) by that of the environment (21 × 21), producing 
approximately 6 × 6 pixel cells for the Contingency Game. We then 
iterate over each of these cells to assign the corresponding colour to 
each cell, for example, we assign the colour red if the current cell is a 
possible self, and grey if the current cell is a wall. At the end, we obtain a 
128 × 128 × 3 matrix that represents the environment as an image, where 
the third dimension stores the colour values for each cell, as the colours 
are represented by three values (red, green and blue).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

http://www.nature.com/nathumbehav
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Data availability
The data that support the findings of this study are available in the 
Open Science Framework at https://osf.io/bwzth/.

Code availability
All code for data analysis and reproducing the plots is available at 
https://github.com/Ethical-Intelligence-Lab/probabilisticSelf.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection All the required code for the data collection of artificial agents are in the following GitHub repository: https://github.com/Ethical-Intelligence-
Lab/probabilisticSelf. Code used for data collection of human subjects are available in the following GitHub repository: https://github.com/
Ethical-Intelligence-Lab/prob_self_app_js. Both repositories are publicly accessible. For running artificial models we used Python 3.9 (for OC 
algorithm) and Python 3.6 (for other RL models). We used Python 3.8 for the human data collection app.

Data analysis All the required code for data analysis are in the following GitHub repository: https://github.com/Ethical-Intelligence-Lab/probabilisticSelf. All 
analyses of human and artificial agent data were perfomed using R (version 4.3.1) and python 3.10.12. For the Bayes Factor analysis, we used 
BayesFactor package (v. 0.9.12-4.4), for calculating Cohen's d values we used effsize package (v. 0.8.1) in R language. We used python for 
generating the plots and for heatmap analyses, and used matplotlib (v. 3.7.1), numpy (v. 1.23.5), pandas (v. 2.0.1), matplotlib (v. 3.7.1), scikit-
learn (v. 1.2.2), scikit-image (v. 0.20.0), rpy2 (v. 3.5.11), pillow (v. 9.5.0), kneed (v. 0.8.5).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The datasets generated and analyzed during the current study are available in the OSF repository, https://osf.io/bwzth/.

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender There was no sex- and gender- based analysis, since we were interested in overall human self-orientation abilities.

Population characteristics See above.

Recruitment We used Cloud Research to publish our studies on Amazon’s Mechanical Turk. We limited recruitment to participants with > 
95% approval rates who had previously participated in at least 100 studies. We believe that there is no self-selection bias that 
would differ these participants from other participants in the Mechanical Turk platform.

Ethics oversight All data were collected under approval by the Harvard University-Area Committee on the Use of Human Subjects.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Studies involved quantitative data.

Research sample We recruited a total 124 participants from Amazon's Mechanical Turk including non-participations. Study 1: 20 participants (40% 
female, Mean age = 42), Study 2: 20 participants (42% female, Mean age = 44), Study 2b: 20 participants (40% female, Mean age = 
43), Study 2c: 20 participants (35% female, Mean age = 38), Study 3: 20 participants (35% female, Mean age = 37), Study 3b: 20 
participants (60% female, Mean age = 43), Study 4: 18 participants (56% female, Mean age = 38), Study 4b: 19 participants (37% 
female, Mean age = 44), Study 4c: 19 participants (63% female, Mean age = 38). Our sample size for all experiments was determined 
by a pilot study that found clean results with just 10 participants. We consider our sample of participants to be representative of 
users within Amazon's Mechanical Turk platform, but not necessarily representative of all humans.

Sampling strategy We randomly sampled from the available Mturk participation pool. Sample size was determined based on a pilot study, which found 
that 10 participants provided sufficient statistical power to observe our effects. In each of the reported studies 1-4, we conservatively 
aimed to double that number of participants. This decision is in alignment with the findings of Julious (2005), where he suggested a 
minimum of 12 participants when there is no prior information to determine the sample size. 
 
Julious, S. A. (2005). Sample size of 12 per group rule of thumb for a pilot study. Pharmaceutical Statistics: The Journal of Applied 
Statistics in the Pharmaceutical Industry, 4(4), 287-291.

Data collection We used Cloud Research to publish our studies online on Amazon’s Mechanical Turk. No one else was present besides the 
participants as the experiment was done online.

Timing Study 1: 8-10 December 2021 
Study 2: 10-14 December 2021 
Study 2b: 18 January 2023 
Study 2c: 20 January 2023 
Study 3: 15 December 2021 
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Study 3b: 19 December 2023 
Study 4: 17-27 December 2021 
Study 4b: 29 March 2023 
Study 4c: 28 April 2023

Data exclusions No exclusions: All passed attention and at least one of two comprehension checks.

Non-participation All participants accepted the consent form. 28 participants did not finish the survey, and out of the remaining 96 participants, 18 did 
not finish the game.

Randomization Participants were randomly allocated.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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